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(Additional file 1: Fig. S1e-g). Overall, about 4000 transcripts were obtained in each of

developmental stages, with concordant coverage for all four nucleotides in the tran-

scriptome and icSHAPE-treated RNAs (Fig. 1b, c; Additional file 1: Fig. S1h; Add-

itional file 2). In sum, we established the all-4-base RNA structural landscape in early

developmental stages at an unprecedented depth and coverage.

We found that the RNA structuromes are highly dynamic from 0 h.p.f. (fertilized egg)

to 6 h.p.f. (shield), with a structural opening immediately after fertilization and a grad-

ual close until 2 h.p.f. (64-cell) followed by a reopening (Fig. 1d). To check whether

these structural changes are due to differential RBP binding across different develop-

mental stages, we performed in vivo mRBPs (mRNA-binding proteins) pulldown by

using 0/0.4/4 h.p.f. embryos (Additional file 3). We did not observe any changes of glo-

bal mRBP binding among these stages (Additional file 1: Fig. S1i). We further systemat-

ically analyzed the icSHAPE reactivity score distribution in a very large dataset of RBP

binding sites of 23 iCLIP studies in zebrafish [32], and compared it with that of the ran-

dom nucleotides on the whole transcripts. If RBP binding generally protects RNA from

the probing reaction of the icSHAPE reagent NAI-N3, the icSHAPE reactivity scores

would be lower at these RBP binding sites when compared to random positions. How-

ever, only very small reactivity score differences between these two datasets were ob-

served, suggesting that RBP binding does not necessarily block NAI-N3 modification

Fig. 1 Comprehensive RNA structural maps during zebrafish early embryogenesis. a Schematic view of
in vivo RNA structural maps during zebrafish early development using icSHAPE. b Nucleotide composition
in transcriptome and all profiled sites (transcriptome, A: 27.91%, U: 25.96%, C: 22.47%, G: 23.66%; icSHAPE, A:
27.86%, U: 25.99%, C: 22.37%, G: 23.78%). c The number of transcripts with more than half of the
nucleotides with valid structural signals at each stage. d Global structural changes by violin plot of average
icSHAPE reactivity of each transcript during zebrafish early development; P values were calculated by paired
two-sided Student’s t test. e Integrative Genomics Viewer (IGV) view of icSHAPE reactivity and RNA structure
model of kpna4 gene at 3′ UTR region
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(Additional file 1: Fig. S1j). Figure 1e and Additional file 1: Fig. S1k show dynamic

changes observed in the RNA structures of kpna4 mRNA by Integrative Genomics

Viewer (IGV).

The previous study by Beaudoin et al. showed that translation drives ORF structural

opening [30]. The structural data in our study by icSHAPE also found that the transla-







Fig. 3 (See legend on next page.)
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